Detection and Classification of Malicious Processes Using System Call Analysis

نویسندگان

  • Naga Kandasamy
  • Ko Nishino
  • Harish Sethu
  • Jennifer Kobrin
  • Maria Walker
  • Adena Klem
چکیده

Detection and Classification of Malicious Processes Using System Call Analysis Raymond J. Canzanese, Jr. Moshe Kam, Ph.D. and Spiros Mancoridis, Ph.D. Despite efforts to mitigate the malware threat, the proliferation of malware continues, with recordsetting numbers of malware samples being discovered each quarter. Malware are any intentionally malicious software, including software designed for extortion, sabotage, and espionage. Traditional malware defenses are primarily signature-based and heuristic-based, and include firewalls, intrusion detection systems, and antivirus software. Such defenses are reactive, performing well against known threats but struggling against new malware variants and zero-day threats. Together, the reactive nature of traditional defenses and the continuing spread of malware motivate the development of new techniques to detect such threats. One promising set of techniques uses features extracted from system call traces to infer malicious behaviors. This thesis studies the problem of detecting and classifying malicious processes using system call trace analysis. The goal of this study is to identify techniques that are ‘lightweight’ enough and exhibit a low enough false positive rate to be deployed in production environments. The major contributions of this work are (1) a study of the effects of feature extraction strategy on malware detection performance; (2) the comparison of signature-based and statistical analysis techniques for malware detection and classification; (3) the use of sequential detection techniques to identify malicious behaviors as quickly as possible; (4) a study of malware detection performance at very low false positive rates; and (5) an extensive empirical evaluation, wherein the performance of the malware detection and classification systems are evaluated against data collected from production hosts and from the execution of recently discovered malware samples. The outcome of this study is a proof-of-concept system that detects the execution of malicious processes in production environments and classifies them according to their similarity to known malware.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers

To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...

متن کامل

Intrusion Detection in IOT based Networks Using Double Discriminant Analysis

Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...

متن کامل

An automated approach to analysis and classification of Crypto-ransomwares’ family

There is no doubt that malicious programs are one of the permanent threats to computer systems. Malicious programs distract the normal process of computer systems to apply their roguish purposes. Meanwhile, there is also a type of malware known as the ransomware that limits victims to access their computer system either by encrypting the victimchr('39')s files or by locking the system. Despite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015